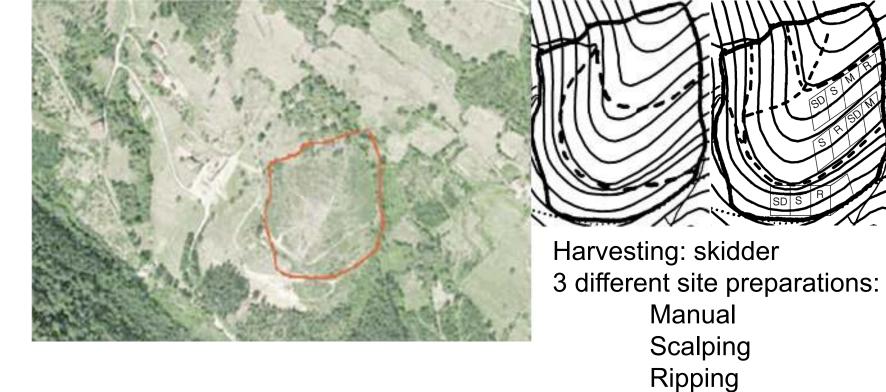
Risks of Soil Erosion and Soil Compaction

Risk of Soil Erosion

Soil erosion hazard key


		Degree of contri	bution of factors	
Site	Low	Moderate	High	Very high
Climate precipitation factor (points)	low 2	moderate 4	high 6	very high 8
Topography slope gradient (%) (points) length/uniformity (points)	0-10 1 short broken 1	11-20 3 short uniform 2	21-50 6 long broken 3	>50 9 long uniform
Depth to water- restricting layer (cm) (points)	>90	61-90 2	30-60 3	<30 4
Surface soil detachability (0-15 cm) ^a (points)	SC,C,SiC	SiCL,CL,SCL	SL,L	Si,SiL,fSL,LS,S
Surface coarse fragments (0-15 cm)* (points)	>60	31-60 2	16-30 3	<16 4
Subsoil permeability (16-60 cm) ^a texture (points)	S,LS,SL,fSL	L,SiL,Si	CL,SCL,SiCL	C,SC,SiC

Soil erosion	Low	Moderate	High	Very high
hazard rating ^b		10000000000	= 500	0.00
(point total)	<16	16-22	23-31	>31

Soil Erosion risk = High

Risk of Soil Erosion

	Autumn 2002	Spring 2003	Autumn 2003	Autumn 2004
Manual	26*	0	0	11
Scalping	389	1031	631	162
Ripping	423	1273	1136	457

* Soil loss (kg/ha constant weight)

Soil compaction and puddling hazard key

		Hazard rating* moisture regime	
Soil texture ^a (0-30 cm)		Xeric-subhygric ^c (H horizons <20 cm)	Subhygric⁴-subhydric *(H horizons ≥20 cm)
Fragmenta (coarse frag	1 ments > 70%)	L	м
z	Sandy S, LS	L	
(S)	Sandy Ioam SL, fSL	М	VH•
Coarse fragments (<70%)	Silty/loamy SiL, Si, L	н	
C	Clayey SCL, CL, SiCL, SC, SiC, C	VH	

	Bulk density (Mg m ⁻³)	Soil Penetration	Available water content	Saturated hydraulic conductivity
	(9)	Resistance (MPa)	(%)	(cm h ⁻¹)
Manual	1.25 (0.0) ^{a*}	1.63 (0.48) ^a	17.9 (0.44) ^a	3.79 (0.14) ^a
Scalping	1.50 (0.0) ^b	3.73 (0.89) ^b	16.9 (0.11) ^b	0.46 (0.17) ^b
Ripping	1.49 (0.81) ^b	3.23 (0.51) ^b	15.4 (0.13) ^c	0.98 (0.36) ^b

Soil compaction and puddling hazard key

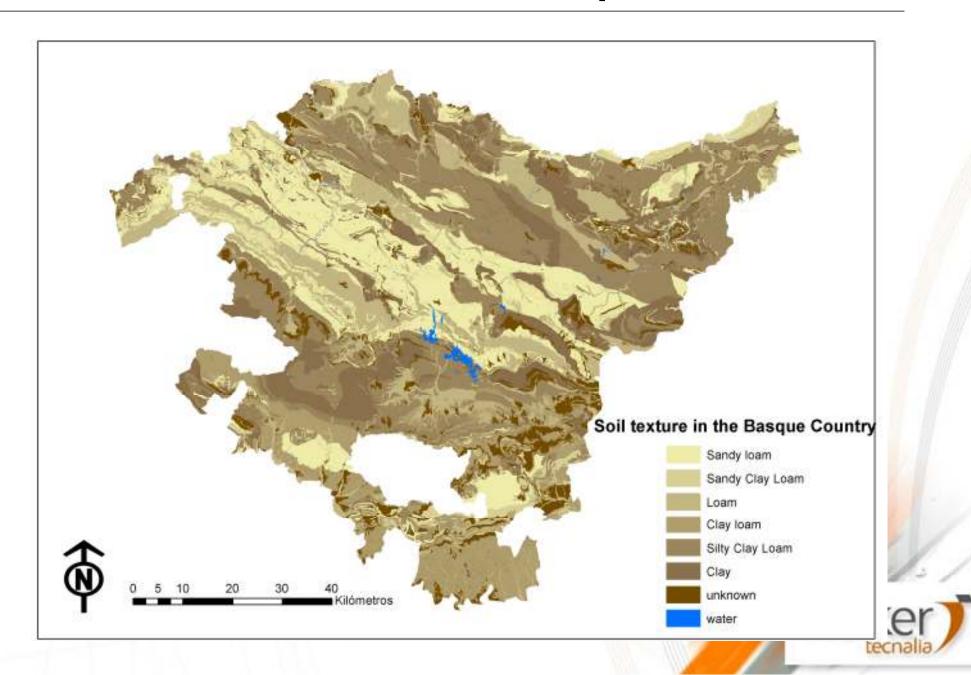
		Hazard r moisture r	
Soil texture ^a (0-30 cm)		Xeric-subhygric ^c (H horizons ⊴20 cm)	Subhygric⁴-subhydric *(H horizons ≥20 cm)
Fragmenta (coarse frag	l ments>70%)	L	м
a	Sandy S, LS	L	
(S)	Sandy Ioam SL, fSL	М	VH•
Coarse fragments (<70%)	Silty/loamy SiL, Si, L	н	
C	Clayey SCL, CL, SiCL, SC, SiC, C	VH	

	Bulk density	Soil	Available	Saturated hydraulic
	(Mg m ⁻³)	Penetration	water content	conductivity
		Resistance	(%)	(cm h ⁻¹)
		(MPa)		
Manual	1.25 (0.0) ^{a*}	1.63 (0.48) ^a	17.9 (0.44) ^a	3.79 (0.14) ^a
Scalping	1.50 (0.0) ^b	3.73 (0.89) ^b	16.9 (0.11) ^b	0.46 (0.17) ^b
Ripping	1.49 (0.81) ^b	3.23 (0.51) ^b	15.4 (0.13) ^c	0.98 (0.36) ^b
			•	•

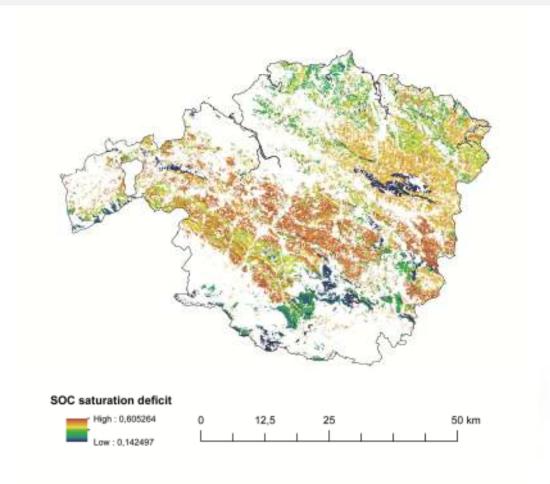
Soil compaction and puddling hazard key

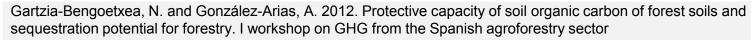
		Hazard r moisture r	
Soil texture ^a (0-30 cm)		Xeric-subhygric ^c (H horizons <20 cm)	Subhygric⁴-subhydric *(H horizons ≥20 cm)
Fragmenta (coarse frag	1 ments > 70%)	L	м
a	Sandy S, LS	L	
(S)	Sandy Ioam SL, fSL	М	VH•
Coarse fragments (<70%)	Silty/loamy SiL, Si, L	н)
Co	Clayey SCL, CL, SiCL, SC, SiC, C	VH	

	Bulk density (Mg m ⁻³)	Soil Penetration	Available water content	Saturated hydraulic conductivity
	(g)	Resistance (MPa)	(%)	(cm h ⁻¹)
Manual	1.25 (0.0) ^{a*}	1.63 (0.48) ^a	17.9 (0.44) ^a	3.79 (0.14) ^a
Scalping	1.50 (0.0) ^b	3.73 (0.89) ^b	16.9 (0.11) ^b	0.46 (0.17) ^b
Ripping	1.49 (0.81) ^b	3.23 (0.51) ^b	15.4 (0.13)°	0.98 (0.36) ^b

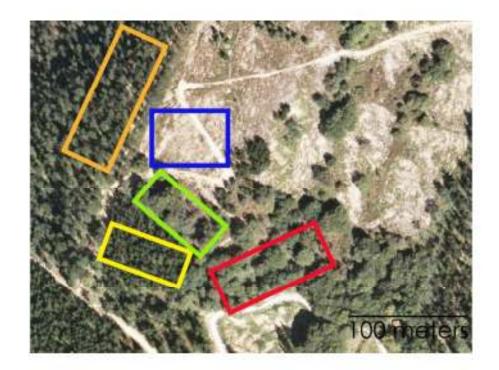

Soil compaction and puddling hazard key

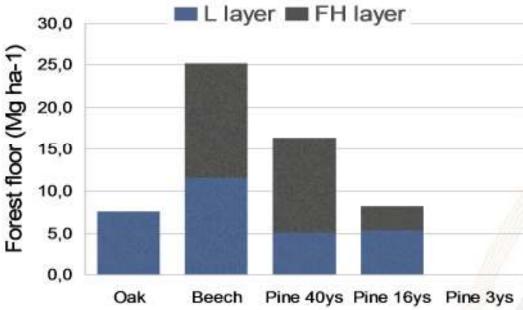
		Hazard r moisture r	
Soil texture ^a (0-30 cm)		Xeric-subhygric ^c (H horizons <20 cm)	Subhygric⁴-subhydric *(H horizons ≥20 cm)
Fragmenta (coarse frag	1 ments > 70%)	L	м
a	Sandy S, LS	L	
(S)	Sandy Ioam SL, fSL	М	VH•
Coarse fragments (<70%)	Silty/loamy SiL, Si, L	н)
Co	Clayey SCL, CL, SiCL, SC, SiC, C	VH	


	Bulk density	Soil	Available	Saturated hydraulic
	(Mg m ⁻³)	Penetration	water content	conductivity
		Resistance	(%)	(cm.h ⁻¹)
		(MPa)		
Manual	1.25 (0.0) ^{a*}	1.63 (0.48) ^a	17.9 (0.44) ^a	3.79 (0.14) ^a
Scalping	1.50 (0.0) ^b	3.73 (0.89) ^b	16.9 (0.11) ^b	0.46 (0.17) ^b
Ripping	1.49 (0.81) ^b	3.23 (0.51) ^b	15.4 (0.13)°	0.98 (0.36) ^b

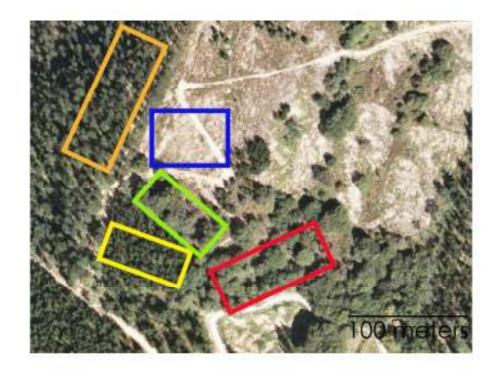


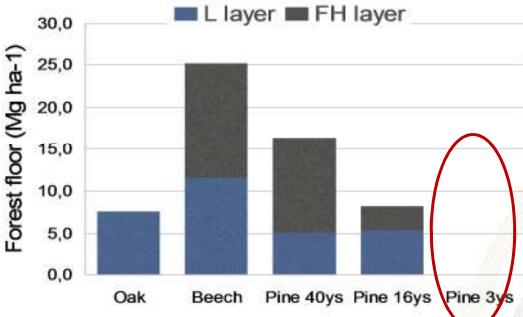
Risk of Soil Organic Matter decline


Calvo de Anta, R., Luís, E., Matilla, N., Casás, F., Macías, F., Camps, M., Vázquez, N., Galiñanes, J.M. 2014. Mapa digital de carbono en suelos del norte de España (Galicia y Cornisa Cantábrica). VI Congreso Ibérico de la Ciencia de Suelo.



Pinus radiata D.Don mechanized 3ys ago




Pinus radiata D.Don mechanized 16ys ago

Pinus radiata D.Don non mechanized

Pinus radiata D.Don mechanized 3ys ago

Pinus radiata D.Don mechanized 16ys ago

Pinus radiata D.Don non mechanized

Loss of Soil Organic Matter

1. Nutrient loss (kg/ha)

N	195
Р	7
Mg	25
Ca	56
K	62

- 2. Reduction of carbon stocks, more than 6 Mg C ha⁻¹ lost: direct effect on Climate Change
- 3. Reduction in water holding capacity of the soils, a reduction of 300% in least limiting water range for plant growth: loss of forest productivity due to water stress
 - 4. Increment of surface soil erosion risk due to compaction, 23% increase in bulk density: loss of water quality

	Oak	Beech	40 y Pine	16 y Pine	3 y Pine
0-5 cm	23/21/20/20/20/20	PAR - 22-210-			
POM	6.52 (0.27) ^a	6.43 (1.58) ^a	3.25 (0.25)h	5.40 (0.01) ^{ab}	1.63 (0.15)h
Microbial biomass	210.59 (28.84) ^a	221.12 (10.64) ^a	239.21 (23.72)≈	304.06 (26.09)	136.51 (4.0)b
Bacterial biomass	115.67 (16.12)ab	117.43 (3.83)ab	125.02 (14.11)ab	159.29 (13.43) ^a	80.64 (1.08)b
Gram+	23.95 (0.37) ^a	25.47 (0.99) ^a	23.59 (0.74) ^a	23.00 (0.39) ^a	34.49 (1.3)h
Gram	29.43 (0.93)3	25.79 (0.34)b	26.44 (1.58)ab	27.75 (0.58)ab	22.64 (0.35)bc
Gram+/Gram-	0.82 (0.04) ^a	0.99 (0.03)b	0.90 (0.04)sb	0.83 (0.03)ab	1.53 (0.08) ^c
fungal	6.63 (1.0)a+	7.97 (1.21)sc	12.85 (2.53)b	12.05 (1.13)bc	3.17 (0.84) ^a
Shannon diversity H	2.50 (0.03) ^a	2.58 (0.02)b	2.65 (0.02)b	2.65 (0.02)b	2.61 (0.01)b
5-15 cm			_		
POM	1.64 (0.05) ^a	1.43 (0.13) ^a	3.24 (0.51)b	1.95 (0.48)a	1.54 (0.11) ^a
Microbial biomass	168.34 (6.81)ab	147.03 (20.08)ab	185.51 (20.56) ^a	203.71 (27.75) ^a	90.13 (4.52)b
Bacterial biomass	89.90 (3.36) ^a	82.11 (9.11)ab	99.86 (7.09) ^a	111.20 (14.47) ^a	50.62 (2.86)b
Gram+	27.08 (0.16)ab	28.08 (0.76)ab	25.68 (1.8) ^a	24.41 (1.2) ^a	30.91 (0.83)b
Gram-	24.74 (0.67) ^a	26.16 (1.12)ab	26.71 (0.72)ab	28.65 (0.91)b	23.13 (0.44)ac
Gram+/Gram-	1.10 (0.02)a	1.08 (0.04) ^a	0.96 (0.04)ab	0.86 (0.06)b	1.34 (0.06)c
fungal	5.56 (0.84)a	4.57 (0.83) ^a	8.74 (3.47) ^a	5.41 (0.42) ^a	2.99 (0.44)ac
Shannon diversity H	2.55 (0.05) ^a	2.64 (0.02) ^{ab}	2.60 (0.01)ab	2.66 (0.02) ^{ab}	2.71 (0.04)b

^{*} Significance level, P < 0.1. Values are the means of three replicates, with standard errors in parentneses. Different letters in the same row indicate significant differences at P < 0.05.</p>

	Oak	Beech	40 y Pine	16 y Pine	3 y Pine
0-5 cm	2 M * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *	Park Constant			
POM	6.52 (0.27) ^a	6.43 (1.58) ^a	3.25 (0.25)h	5.40 (0.01) ^{ab}	1.63 (0.15)h
Microbial biomass	210.59 (28.84)a	221.12 (10.64) ^a	239.21 (23.72)≤	304.06 (26.09)	136.51 (4.0)b
Bacterial biomass	115.67 (16.12)ab	117.43 (3.83)ab	125.02 (14.11)ab	159.29 (13.43) ^a	80.64 (1.08)b
Gram+	23.95 (0.37) ^a	25.47 (0.99)3	23.59 (0.74) ^a	23.00 (0.39) ^a	34.49 (1.3)b
Gram-	29.43 (0.93) ^a	25.79 (0.34)b	26.44 (1.58)ab	27.75 (0.58) ^{sb}	22.64 (0.35)bc
Gram+/Gram-	0.82 (0.04) ^a	0.99 (0.03)b	0.90 (0.04)	0.83 (0.03)ab	1.53 (0.08)c
fungal	6.63 (1.0)3*	7.97 (1.21)sc	12.85 (2.53)b	12.05 (1.13)bc	3.17 (0.84) ^a
Shannon diversity H	2.50 (0.03) ^a	2.58 (0.02)b	2.65 (0.02)b	2.65 (0.02)b	2.61 (0.01)b
5-15 cm					
POM	1.64 (0.05) ^a	1.43 (0.13) ^a	3.24 (0.51)b	1.95 (0.48)a	1.54 (0.11)5
Microbial biomass	168.34 (6.81)ab	147.03 (20.08)ab	185.51 (20.56) ^a	203.71 (27.75) ^a	90.13 (4.52)b
Bacterial biomass	89.90 (3.36) ^a	82.11 (9.11)ab	99.86 (7.09) ^a	111.20 (14.47) ^a	50.62 (2.86)b
Gram+	27.08 (0.16)ab	28.08 (0.76)ab	25.68 (1.8) ^a	24.41 (1.2) ^a	30.91 (0.83)b
Gram-	24.74 (0.67) ^a	26.16 (1.12)ab	26.71 (0.72)ab	28.65 (0.91)b	23.13 (0.44)ac
Gram+/Gram-	1.10 (0.02)a	1.08 (0.04) ^a	0.96 (0.04)ab	0.86 (0.06)b	1.34 (0.06)c
fungal	5.56 (0.84) ^a	4.57 (0.83)4	8.74 (3.47) ^a	5.41 (0.42) ^a	2.99 (0.44)ac
Shannon diversity H	2.55 (0.05) ^a	2.64 (0.02)ab	2.60 (0.01)ab	2.66 (0.02) ^{ab}	2.71 (0.04)b

^{*} Significance level, P < 0.1. Values are the means of three replicates, with standard errors in parentneses. Different letters in the same row indicate significant differences at P< 0.05.

	Oak	Beech	40 y Pine	16 y Pine	3 y Pine
0-5 cm	2 M * 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	Part of the second			
POM	6.52 (0.27) ^a	6.43 (1.58) ^a	3.25 (0.25)h	5.40 (0.01) ^{ab}	1.63 (0.15)h
Microbial biomass	210.59 (28.84)a	221.12 (10.64) ^a	239.21 (23.72)≈	304.06 (26.09)	136.51 (4.0)b
Bacterial biomass	115.67 (16.12)ab	117.43 (3.83)ab	125.02 (14.11)ab	159.29 (13.43) ^a	80.64 (1.08)b
Gram+	23.95 (0.37) ^a	25.47 (0.99) ^a	23.59 (0.74) ^a	23.00 (0.39) ^a	34.49 (1.3)h
Gram-	29.43 (0.93)3	25.79 (0.34)b	26.44 (1.58)ab	27.75 (0.58)ab	22.64 (0.35)bc
Gram+/Gram-	0.82 (0.04) ^a	0.99 (0.03)b	0.90 (0.04)	0.83 (0.03)ab	1.53 (0.08)
fungal	6.63 (1.0) ^{2*}	7.97 (1.21)*C	12.85 (2.53)b	12.05 (1.13)bc	$3.17(0.84)^4$
Shannon diversity H	2.50 (0.03) ^a	2.58 (0.02)b	2.65 (0.02)b	2.65 (0.02)b	2.61 (0.01)b
5-15 cm			_		
POM	1.64 (0.05) ^a	1.43 (0.13) ^a	3.24 (0.51)b	1.95 (0.48)a	1.54 (0.11) ^a
Microbial biomass	168.34 (6.81)ab	147.03 (20.08)ab	185.51 (20.56) ^a	203.71 (27.75)2	90.13 (4.52)b
Bacterial biomass	89.90 (3.36) ^a	82.11 (9.11)ab	99.86 (7.09) ^a	111.20 (14.47) ^a	50.62 (2.86)b
Gram+	27.08 (0.16)ab	28.08 (0.76)ab	25.68 (1.8) ^a	24.41 (1.2) ^a	30.91 (0.83) ^b
Gram-	24.74 (0.67) ^a	26.16 (1.12)ab	26.71 (0.72)ab	28.65 (0.91)b	23.13 (0.44)ac
Gram+/Gram-	1.10 (0.02)a	1.08 (0.04) ^a	0.96 (0.04)ab	0.86 (0.06)b	1.34 (0.06)c
fungal	5.56 (0.84) ^a	4.57 (0.83)4	8.74 (3.47) ^a	5.41 (0.42) ^a	2.99 (0.44)ac
Shannon diversity H	2.55 (0.05) ^a	2.64 (0.02)ab	2.60 (0.01)ab	2.66 (0.02) ^{ab}	2.71 (0.04)b

^{*} Significance level, P < 0.1. Values are the means of three replicates, with standard errors in parentneses. Different letters in the same row indicate significant differences at P < 0.05.</p>

	Oak	Beech	40 y Pine	16 y Pine	3 y Pine
0-5 cm	2 M ***	Park Commence			
POM	6.52 (0.27) ^a	6.43 (1.58) ^a	3.25 (0.25)h	5.40 (0.01) ^{ab}	1.63 (0.15)h
Microbial biomass	210.59 (28.84) ^a	221.12 (10.64) ^a	239.21 (23.72) €	304.06 (26.09)F	136.51 (4.0)b
Bacterial biomass	115.67 (16.12)ab	117.43 (3.83)ab	125.02 (14.11)ab	159.29 (13.43) ^a	80.64 (1.08)b
Gram+	23.95 (0.37) ^a	25.47 (0.99) ^a	23.59 (0.74) ^a	23.00 (0.39) ^a	34.49 (1.3)b
Gram	29.43 (0.93)3	25.79 (0.34)b	26.44 (1.58)ab	27.75 (0.58)ab	22.64 (0.35)bc
Gram+/Gram-	0.82 (0.04) ^a	0.99 (0.03)b	0.90 (0.04)	0.83 (0.03)ab	1.53 (0.08)
fungal	6.63 (1.0) ^a *	7.97 (1.21) ^{sc}	12.85 (2.53) ^b	12.05 (1.13)bc	3.17 (0.84)4
Shannon diversity H	2.50 (0.03) ^a	2.58 (0.02)b	2.65 (0.02)b	2.65 (0.02)b	2.61 (0.01)b
5-15 cm					
POM	1.64 (0.05) ^a	1.43 (0.13) ^a	3.24 (0.51)b	1.95 (0.48)a	1.54 (0.11) ^a
Microbial biomass	168.34 (6.81)ab	147.03 (20.08)ab	185.51 (20.56) ^a	203.71 (27.75)2	90.13 (4.52)b
Bacterial biomass	89.90 (3.36) ^a	82.11 (9.11)ab	99.86 (7.09) ^a	111.20 (14.47) ^a	50.62 (2.86)b
Gram+	27.08 (0.16)ab	28.08 (0.76)ab	25.68 (1.8) ^a	24.41 (1.2) ^a	30.91 (0.83)b
Gram-	24.74 (0.67) ^a	26.16 (1.12)ab	26.71 (0.72)ab	28.65 (0.91)b	23.13 (0.44)ac
Gram+/Gram-	1.10 (0.02) ^a	1.08 (0.04) ^a	0.96 (0.04)ab	0.86 (0.06)b	1.34 (0.06)c
fungal	5.56 (0.84) ^a	4.57 (0.83)4	8.74 (3.47) ^a	5.41 (0.42) ^a	2.99 (0.44)ac
Shannon diversity H	2.55 (0.05) ^a	2.64 (0.02)ab	2.60 (0.01)ab	2.66 (0.02) ^{ab}	2.71 (0.04)b

^{*} Significance level, P < 0.1. Values are the means of three replicates, with standard errors in parentneses. Different letters in the same row indicate significant differences at P < 0.05.</p>

	Oak	Beech	40 y Pine	16 y Pine	3 y Pine
0-5 cm					100000000000000000000000000000000000000
POM	6.52 (0.27) ^a	6.43 (1.58) ^a	3.25 (0.25)h	5.40 (0.01) ^{ab}	1.63 (0.15)b
Microbial biomass	210.59 (28.84) ^a	221.12 (10.64) ^a	239.21 (23.72)∞	304.06 (26.09)	136.51 (4.0)b
Bacterial biomass	115.67 (16.12)ab	117.43 (3.83)ab	125.02 (14.11)ab	159.29 (13.43) ^a	80.64 (1.08)b
Gram+	23.95 (0.37) ^a	25.47 (0.99) ^a	23.59 (0.74) ^a	23.00 (0.39) ^a	34.49 (1.3)b
Gram-	29.43 (0.93)3	25.79 (0.34)b	26.44 (1.58)ab	27.75 (0.58)ab	22.64 (0.35)bc
Gram+/Gram-	0.82 (0.04) ^a	0.99 (0.03)b	0.90 (0.04)	0.83 (0.03)ab	1.53 (0.08)
fungal	6.63 (1.0) ^a *	7.97 (1.21) ^{sc}	12.85 (2.53) ^b	12.05 (1.13)bc	3.17 (0.84)
Shannon diversity H	2.50 (0.03) ^a	2.58 (0.02)b	2.65 (0.02)b	2.65 (0.02)b	2.61 (0.01)b
5-15 cm					
POM	1.64 (0.05) ^a	1.43 (0.13) ^a	3.24 (0.51)b	1.95 (0.48)a	1.54 (0.11) ^a
Microbial biomass	168.34 (6.81)ab	147.03 (20.08)ab	185.51 (20.56) ^a	203.71 (27.75)2	90.13 (4.52)b
Bacterial biomass	89.90 (3.36) ^a	82.11 (9.11)ab	99.86 (7.09) ^a	111.20 (14.47) ^a	50.62 (2.86)b
Gram+	27.08 (0.16)ab	28.08 (0.76)ab	25.68 (1.8) ^a	24.41 (1.2) ^a	30.91 (0.83)b
Gram-	24.74 (0.67) ^a	26.16 (1.12)ab	26.71 (0.72)ab	28.65 (0.91)b	23.13 (0.44)ac
Gram+/Gram-	1.10 (0.02)a	1.08 (0.04) ^a	0.96 (0.04)ab	0.86 (0.06)b	1.34 (0.06)c
fungal	5.56 (0.84) ^a	4.57 (0.83)4	8.74 (3.47) ^a	5.41 (0.42) ^a	2.99 (0.44)ac
Shannon diversity H	2.55 (0.05) ^a	2.64 (0.02) ^{ab}	2.60 (0.01)ab	2.66 (0.02) ^{ab}	2.71 (0.04)b

^{*} Significance level, P < 0.1. Values are the means of three replicates, with standard errors in parentneses. Different letters in the same row indicate significant differences at P < 0.05.</p>

Risk of Soil Sealing

Surface (ha)	NFI 2010	NFI 2005	
Forest soils	491526	494470	-2944
Agricultural soils	179682	180730	-1048
Sealed soils	45863	41684	4179
Water	5368	5555	
Total	722439	722439	-11/2

source: National Forest Inventory

Future perspective

1. Basque society is demanding more and more services to the forests

Future perspective

- 2. Basque society is also demanding more and more greener products
- 3. But also Europe with Europe 2020 strategy in which a low carbon economy is reinforced
- 4. And the changes in temperature and rainfall that climate change is expected to bring about will make soils increasingly more vulnerable and forest soils will not be an exception.

Future perspective

If we want to satisfy the demands of the society, we need to diversify our forest production and assure sustainability in intensification.

For what:

Forest soils and their risks to degradation, all the risks not only erosion, need to be taken into account in the forest policies. It is important the implementation of a soil protection strategy based on the knowledge.

Forest managers need to know more about soils and forest researcher needs to increase the awareness of soils and help managers to manage them

And the society will have to pay for all the services is asking to the forests

